In any triangle, the feet of the altitudes, the midpoints of the sides, and the midpoints of the line segments connecting the vertices with the orthocenter all lie on a circle.

In order to prove the existence of such a circle, we break the proof into three steps.
Lemma 1:

In triangle ABC, points A_H and B_H are on BC and AC, respectively, so that AA_H is perpendicular to BC and BB_H is perpendicular to AC. Prove that triangle A_HB_HC is similar to triangle ABC.

First notice that the triangles CAB and CB_HA_H share angle C. Then, it is clear that angles AB_HB and AA_HB are equal, as they are both right angles. Thus quadrilateral AB_HA_HB is cyclic, and therefore angle ABC supplements angle AB_HA_H. Note that angle AB_HA_H supplements CB_HA_H as well.
Thus, angles CB_{AH} and ABC are congruent, and therefore triangle $A_{BH}B_{CH}C$ is similar to triangle ABC.

Lemma 2:

In triangle ABC, points A_{BH}, B_{CH} and C_{AH} lie on lines BC, AC, and AB respectively, so that AA_{BH} is perpendicular to BC, BB_{CH} is perpendicular to AC, and CC_{AH} is perpendicular to AB. Additionally, point M lies on AB such that segment AM is congruent to BM. Prove that quadrilateral $A_{BH}B_{CH}C_{AH}M$ is cyclic.

By applying the previous proof, we find that angles CB_{AH}, C_{AH}, and AB_{CH} are congruent. We will call this angle value β.

It is obvious that angles CB_{AH}, AB_{CH}, and $C_{AH}B_{AH}$ are supplementary and that angle $C_{AH}B_{AH}$ is equal to $180^\circ-2\beta$.

Additionally, in triangle $AA_{BH}B$, M is the midpoint of the hypotenuse AB. Thus follows that lines $A_{BH}M$ and MB are congruent.

Since lines $A_{BH}M$ and MB are congruent, angle MBA_{BH} and $MA_{BH}B$ are congruent, equal to angle value β.

Using that fact, $BAMA_{BH}$ is equivalent to $180^\circ-2\beta$, and, from this, angle $BAMA_{BH}$ is equal to 2β.
From this, we can conclude that the quadrilateral $MCAH$ is cyclic, and therefore, the feet of the altitudes perpendiculars and the midpoints lie on the same circle.

Lemma 3:

In triangle ABC, points H_a, H_b, and H_c lie on lines BC, AC, and AB respectively such that AH_a is perpendicular to BC, BH_b is perpendicular to AC, and CH_c is perpendicular to AB. Additionally, point H lies on the intersection of lines AH_a, BH_b, and CH_c. Finally, point O_c lies on line HC such that line HO_c is congruent to line O_cC. Prove that points H_c, H_b, H_a, and O_c are concyclic.

\[
\angle H_bH_cH_a = 180° - 2C \implies O_c \text{ lies on the same circle as the midpoints and feet of the altitudes of triangle ABC because } H_aH_cH_b \text{ is cyclic.}
\]

This argument can be repeated for O_a and O_b.

Also, O_a, O_b, and O_c are sometimes referred to as the midpoints of the segments from the orthocenter to the vertices, and they are:

\[
\angle H_bHH_a = 360° - C - 90° - 90° = 180° - C \implies H_bHH_aC \text{ is cyclic.}
\]

O_c is the circumcenter of H_aH_bC, and thus the center of the circle circumscribed around H_bHH_aC. So CO_c and O_cH are both radii and thus equal in length, and O_c is the midpoint of HC. Identical proofs for O_a and O_b follow.
Therefore, all nine points lie on the same circle.